(+380) (562) 36-75-04, 36-22-02, 36-22-03, (056) 796-80-60

info@delishes.com.ua


Свинцовые герметичные аккумуляторы

Популярная теория свинцовых аккумуляторов

Примерно в 1859-1860 годах в лаборатории Александра Беккереля, работал в качестве ассистента Гастон Планте. Молодой человек решил заняться улучшением вторичных элементов, чтобы сделать их надежными источниками тока для телеграфии. Сначала он заменил платиновые электроды "газового элемента" Грове свинцовыми. А после многочисленных экспериментов и поисков вообще перешел к двум тонким свинцовым пластинкам. Он их проложил суконкой и навил этот сэндвич на деревянную палочку, чтобы он влезал в круглую стеклянную банку с электролитом. Далее подключил обе пластины к батарее. Через некоторое время вторичный элемент зарядился и сам оказался способен давать достаточно ощутимый постоянной ток. При этом, если его сразу не разряжали, способность сохранять электродвижущую силу оставалась в нем на довольно продолжительное время. Это было настоящее рождение накопителя электрической энергии, или аккумулятора.

 

Самое интересное, что до сих пор самые мощные(по отдаваемому току и принимаемому току зарядки) свинцовые аккумуляторы это аккумуляторы фирмы "Оптима", и построены они тоже по "спиральному" принципу! .

 

Потом было обнаружено, что если заряженный первоначально прибор(см. рис выше) разрядить, затем пропустить через него ток в обратном направлении, да еще проделать эту операцию не один раз, то увеличивается слой окисла на электродах и емкость вторичного элемента возрастает. Этот процесс получил название формовки пластин и занимал у изобретателя Камилла Фора около трех месяцев.

После Парижской выставки 1878 года Фору пришла идея нового метода формовки пластин. Он попробовал заранее покрывать их оксидом свинца, свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскислялся. При этом слой окисла приобретал очень пористое строение, а значит, площадь его поверхности существенно увеличивалась. Процесс формовки проходил значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Планте. Другими словами, их энергоемкость была выше. Это обстоятельство привлекло к ним большое внимание электротехников.

 

Технология "намазных пластин" современных аккумуляторов даже сейчас, спустя более 100 лет, остается такой-же...  Кто не верит - читаем книгу: 

 

 

Немного химии.

С точки зрения хим. динамики свинцовый аккумулятор(далее СА) представляет обратимую систему, и именно обратимый гидроэлектрический элемент. Восста­новление свободной энергии такого эле­мента выражается накоплением на электро­дах продуктов электролитического распада. В теории гальванических элементов та­кое накопление, вторичный эффект эл.-хим. процесса, носит название поляриза­ции. Вредное в обычных элементах, это побочное явление положено в основу слу­жбы СА, называемых поэтому вторичны­ми, или поляризационными, элементами. В принципе, всякий СА состоит из одного эле­ктролита, содержащегося в некотором баке, и двух электродов с клеммами. Положительный электрод на­зывается анодом, отрицательный—катодом (в американской литературе катод — поло­жительная пластина, анод — отрицатель­ная). Аккумуляторы различаются между собою химической природой электролита и электродов, формой и строением электро­дов, устройством бака и т. д.

 

Зарядка: Сначала разность потенциалов быстро подни­мается над значением 2V, соответствующим плот­ности электролита, а затем падает до 2,1V.

Разрядка: разность потенциалов очень быстро падает до 1,9 V. 

 

Стадия II: Занимает наибольшую часть.

Зарядка: Разность потенциалов медленно возрастает, приблизительно до 2,2V.

Разрядка: Разность потенциалов медленно убывает, при­близительно до 1,85V.

 

Cтадия III: Занимает сравнительно небольшое время.

Зарядка: Разность потенциалов довольно быстро возрастает до 2,5—2,6V. 

Разрядка: Разность потенциалов быстро падает, при чем кривая претерпевает изгиб и стремится к нулю (см. выше графики разряда - зависит от тока разряда!)

 

Этим трем стадиям соответствуют хара­ктерные видимые явления: в заряжен­ном СА. катод имеет серо-металлический вид и состоит из губчатого свинца,тогда как анод покрыт перекисью свинца Pb2O5 интенсив­ного черного цвета, нестойким, сильно оки­сляющим веществом с значительной электро­проводностью. Внезапное понижение ста­дии I разрядки происходит от уменьшения концентрации кислоты в порах активной массы СА, после чего концентрация выравни­вается диффузией частиц кислоты в электролите. 

Это очень важный момент, который надо понимать - из-за того что в СА применяется жидкий электролит, и толщина "намазки" пластин существенна, самым идеальным способом зарядки(да и разрядки!) СА была-бы пульсирующая зарядка, т.е. с применением ШИМ, а лучше "медленно-пульсирующего" типа - когда за плавным нарастанием импульса следует пауза, в течении которой происходит "усвоение" порции энергии(идут.хим процессы) и выравнивается плотность электролита(т.е. подается к материалу пластин новая порция серной кислоты из раствора).

Аналогично и для разрядки - мы знаем что если "дать отдохнуть" СА (сняв с него всю нагрузку) то напряжение на СА повышается и с него можно еще получить энергии. Обьяснение аналогичное: выравнивание плотности электролита, т.е. подача кислоты к материалу пластин за счет диффузии.

 

Стадия III разрядки связана со вторичным уменьшением концен­трации кислоты. В разряженном CА. анод состоит из двуокиси свинца РЬО2, вещества бурого цвета, с удельным сопротивле­нием в 22 раза большим, чем у перекиси свинца Pb2O5. Катод состоит из недокисного сернокислого свинца Pb2SO4, вещества темносерого, почти чер­ного цвета, обладаю­щего значительною электропроводностью и весьма нестойкого. Удельный вес электролита падает от уменьшения концентрации кисло­ты как раз в количе­стве, потребном для образования на като­де недокисной серно­кислой соли. Именно поэтому, остав­ленный в бездействии незаряженный СА. гиб­нет («сульфируется», «сульфатируется»), при чем и катод и анод покрываются окисным сернокислым свинцом PbSO4, веще­ством белого цвета, электронепроводящим и стойким.

Если оставить батарею в разряженном состоянии, сульфат свинца начинает растворяться в электролите до его полного насыщения, а затем выпадает назад на поверхность пластин, но уже в виде крупных и практически нерастворимых кристаллов. Они откладываются на поверхности пластин и в порах активной массы, образуя сплошной слой, который изолирует пластины от электролита, препятствуя его проникновению вглубь. В результате большие объемы активной массы оказываются "выключенными", а общая емкость батареи значительно уменьшается.

 

Почему батарея из нескольких АКБ выходит из строя и неравномерно заряжается ?

 

"Теория двойной сульфатации" говорите ?  

ну так вот еще пара кусочков "старого знания" - все эти реакции 

(в том числе 20(!) неэлектродных, которым не нужна кислота!), протекают внутри Свинцового Аккумулятора, 

и каждая из них вносит свою лепту в процессы:

 

При сульфатации(сильном разряде) концентрация кислоты опять падает. При зарядке СА с пластина­ми, не подвергшими­ся выпадению кристаллов, катод вновь принимает серо-металлический цвет, анод чернеет, а концентрация электролита повышается. Зарядные и разрядные кривые СА. не совпадают между собой, и площадь ме­жду ними выражает потерю энергии на цикл зарядки и разрядки. Однако совершенное смыкание кривых доказывает, что в СА не происходит побочных реакций и что его мож­но рассматривать как элемент с почти совер­шенной обратимостью!

 

Но не все так гладко, как пишет нам учебник...

 

С момента изобретения свинцового кислотного аккумулятора и разработки в 1882 г. английскими исследователями Gladstone и Tribe химической теории, описывающей токообразующие реакции,  протекающие на электродах свинцового аккумулятора при его разряде и заряде, известной как теория "двойной сульфатации", и до настоящего времени предпринимались неоднократные попытки пересмотреть эту теорию, предложить иной механизм протекания реакций .

 

Причины такого положения заключаются в том, что, не взирая на общее признание исследователями теории "двойной сульфатации" наиболее точно теоретически описывающей термодинамические процессы в свинцовом аккумуляторе, до настоящего времени существуют противоречия в количественной оценке веществ, участвующих в токообразующих реакциях, оценке состава веществ, образующихся па положительном электроде при разряде аккумулятора, а также в  описании механизма протекания реакций на электродах аккумулятора. По многим вопросам у исследователей отсутствует единая точка зрения. Отдельные вопросы теории аккумулятора вообще подробно образом не освещены.

 

Теорию свинцового аккумулятора нельзя считать завершенной.

 

Так, например, согласно теории "двойной сульфатации" продуктом токообразующей химической реакции при разряде аккумулятора на положительном электроде является нерастворимое химическое вещество PbSO4 , осаждаемое на поверхности активной массы в количествах, обеспечивающих отдачу аккумулятором номинальной емкости.

 

Авторы "Учебников" пишут, не моргнув глазом, о "двойной сульфатации", но при таком механизме протекания токообразующей реакции уже при разряде аккумулятора на 1А·ч емкости поверхность его положительных электродов должна быть покрыта не менее чем 2 монослоями сульфатов свинца PbSO4, размер кристаллов которых сопоставим с диаметром пор в активной массе!!!

 

В результате этого свободный доступ молекул кислоты из состава электролита через поры к активной массе положительного электрода затруднится, в связи с чем химическая реакция разряда должна будет прекратиться, чего на самом деле не происходит.

 

Полученная при расчётах интенсивность сульфатации электродов свинцового аккумулятора при его разряде на величину номинальной емкости оказалась слишком высокой, составляет десятки и сотни монослоев, что свидетельствует о том, что поверхностный процесс зарядообразования, протекающий согласно общепринятой теории "двойной сульфатации", не обеспечивает фактическую ёмкость реального аккумулятора!

 

То есть: в случае протекания химических реакций при разряде в свинцовом аккумуляторе в соответствии с теорией "двойной сульфатации" при снижении емкости на величину, не более 1 – 2% от номинальной, происходил бы его полный разряд.

 

Таким образом, полученные результаты исследования элементного состава активной массы положительных электродов аккумулятора разными учеными ставят под сомнение справедливость предлагаемого теорией "двойной сульфатации" механизма протекания электродного процесса на положительном электроде при разряде аккумулятора.

Следовательно, теория "двойной сульфатации" не полностью объясняет протекание процессов зарядо- и токообразования, саморазряда в свинцовом кислотном аккумуляторе и требует уточнения.

 

...................

 

Теперь давайте поговорим немного о доставшей уже всех теме "ШИМ большими токами разрушает свинцовую АКБ" 

Согласно исследованиям Battery Council International, 84% свинцово-кислотных батарей выходят из строя из-за сульфатации. Сульфатация является еще более остной проблемой в солнечных энергосистемах, потому что вероятность полного заряда в таких системах сильно отличается от традиционного заряда АБ. Увеличенные периоды недозаряда АБ в солнечных энергосистемах приводят к коррозии решетки, а положительные пластины аккумуляторов покрываются кристалами сульфатов.

Широтно-импульсная модуляция тока заряда может предотвратить образование отложений сульфатов, помогает преодолеть резистивный барьер на поверхности электродной сетки и пробить коррозию на переходах. В дополнение к улучшенному КПД заряда и увеличенной емкости, существуют убедительные доказательства того, что такой режим заряда может восстановить емкость АБ, которая "потерялась" со временем при работе АБ в фотоэлектрической системе. Некоторые результаты исследований приведены ниже.

В 1994 CSIRO, ведущая исследовательская группа в Австралии [1], опубликовала статью, в которой указывается, что пульсирующий ток заряда "позволяет восстановить емкость элементов, работавших в циклическом режиме". Процесс сульфатации замедляется, а внутренние слои коррозии становятся тоньше и разделяются на "островки". Электрическое сопротивление уменьшается и емкость увеличивается. Вывод статьи в том, что пульсирующий ток заряда "может привести к восстановлению емкости аккумуляторной батареи."

Другая статья, опубликованная Sandia National Labs в 1996 году [2], приводит данные по тестирования герметичных аккумуляторов, которые потеряли более 20% своей емкости. Обычный заряд постоянным током не мог восстановить потерянную емкость АБ. Затем батарея была заряжена с использованием ШИМ контроллера, что привело к "восстановлению большей части потерянной емкости АБ."

Наконец, Morningstar, провели тесты по восстановлению емкости АБ. Прилигаемый график [3] показывает, что аккумуляторная батарея восстановиля большую часть потерянной емкости после заряда при помощи SunLight контроллера. После теста, солнечная система освещения в течение 30 дней практически не обеспечивала освещение, так как система отключалась по защите от перезаряда каждую ночь. Аккумуляторная батарея была очень старой и подлежала утилизации. Затем, нагрузка стала работать дольше каждую ночь, что отражено на графике. В течение последующих 3 месяцев емкость АБ постоянно возрастала. Этот тест продолжается в Morningstar.

Позднее было проведено исследование контроллеров с ШИМ, которое доказало, что контроллеры повышали восприимчивость АБ к заряду именно вследствие использования широтно-импульсной модуляции тока заряда. Контроллеры MorningStar SunSaver позводили даже увеличить эффективность заряда АБ на 2-8% даже по сравнению с контроллерами, которые поддерживали постоянно высокое напряжение на АБ.

Литература:

1. Lam, L.T., et al, ‘Pulsed-current charging of lead/acid batteries-a possible means for overcoming premature capacity loss?,’ CSIRO, Australia, Journal of Power Sources 53, 1995.

2. Hund, Tom, ‘Battery Testing for Photovoltaic Applications,’ Sandia National Laboratories, Albuquerque, NM, presented at 14th NREL Program Review, Nov. 1996. 


« назад к списку новостей
  • Новый Лунь 25 новые возможности
    Новый Лунь 25 новые возможности
    Новый Лунь 25 с WI-Fi модулем и поддержкой радиодатчиков

    15.08.2017

    Подробнее
  • Основные преимущества и достоинства аhd видеонаблюдения
    Основные преимущества и достоинства аhd видеонаблюдения
    AHD видеонаблюдение – это одно из популярных решений на современном рынке. Система аналогового типа гарантирует высокую четкость изображения.

    5.03.2016

    Подробнее
  • Извините данной страницы уже не существует
    Извините данной страницы уже не существует
    Информация устарела или продукция снята с производства

    5.03.2016

    Подробнее